

High-Energy, Multi-Spectral Laser for Surf-Zone Mine Countermeasures. Topic #N01-109

OBJECTIVES:

Overall Phase I/II Objective:

Build and deliver a multispectral transmitter to MARCOR. Transmitter will be interfaced to a government-furnished camera.

Phase I Objectives:

- Outline a sensor architecture and development path
- Develop detailed design for a high wall plug efficiency brassboard multi-line transmitter

PERFORMERS:

Company Name: Coherent Technologies Inc.

Address: 655 Aspen Ridge Drive, Lafayette, CO 80027

Website/email. www.ctilidar.com

Email iainm@ctilidar.com

PRINCIPAL INVESTIGATOR:

Name Dr Iain T McKinnie

Phone/Fax 303-604-2000 (ext. 132)

PHASE I/II/III Phase I

Amount: \$69.987

MCSC TPOC:

Name Dr John Holloway

Phone/Fax/Email

CONTRACT #: M67854-02-C-1007

CAPABILITIES:

- Multispectral transmitter:
 - 3 visible lines (523nm, 656nm, 745nm), 50-80mJ/line
 - 3 Near IR lines, 30-100mJ/line
 - Option for additional 438nm blue line
 - 1-3ns, 30Hz pulses for high range resolution
 - "Flat-top" beam for uniform illumination
 - Synchronized output for camera integration
- CTI's proprietary transmitter technology, providing superior performance than conventional laser architectures:
 - compact, highly-efficient, ruggedizable hardware
 - Proven materials and designs
- Aircraft-compatible Phase II hardware with a path to Phase III flight-qualified system.

High-Energy, Multi-Spectral Laser for Surf-Zone Mine Countermeasures. Topic #N01-109

Issues/Concerns: Risks and Mitigation Strategy

Risk Area	Mitigation	
Transmitter Concept and Design	 CTI has many years of demonstrated experience in multi-spectral transmitters Critical self-imaging waveguide technology leverages multiple recent and current efforts Frequency conversion technology proven at CTI Technology is generic and many other materials/ wavelengths can be used 	
Engineered System	 In house engineering (thermal, mechanical, electronic) expertise in rugged and F-Qual systems 	

Technical Innovations:

- Breakthrough transmitter technology
 - Novel architecture eliminating vulnerable OPO/ OPA conversion stages and conventional resonators
 - Highly efficient, compact and ruggedizable self-imaging waveguide Nd:YLF lasers
 - 100mJ, 1-3ns, 30Hz flat-top profile operation of waveguide lasers
 - Frequency conversion in simple Raman or SHG stages

Transition/Commercial Applications:

Including: altimetry and ranging, terrain mapping, designation, ecology, search and rescue, medical, security/homeland defense

Development Plan:

- 1. Phase II will develop a breadboard system for integration with COTS range-gated camera hardware and aircraft system tests
- 2. Ruggedization of Phase III engineered prototype brassboard system
- 3. EMD Phase leading to product development for DoD and commercial applications

Evaluation Test Criteria:

- 1. Transmitter performance (including pulse energy, wavelength, duration, rep. rate)
- 2. Transmitter size, weight, prime power to fit aircraft platform requirements
- 3. Camera range-gate synchronization
- 4. Multispectral, high resolution range-gated image data

SCHEDULE:

SBIR Workplan: N01-109	02	03	04	
Phase I	Zummuni.			
Phase I Option				
Phase II				
	2002	2003	2004	

FUNDING:

Phase I: \$69,987

Phase I Option (proposed): \$30k

Phase II (proposed): \$750k

High-Energy, Multi-Spectral Laser for Surf-Zone Mine Countermeasures. US MC SBIR Topic #N01-109

Technical Approach:

Compact, ruggedizable and efficient short-pulse diode-pumped multispectral transmitter integrated with range-gated camera for high resolution 3D imaging.

Performers: lain T McKinnie

Timothy J Carrig

Josef R Unternahrer

John E Koroshetz

Company Name: Coherent Technologies Inc.

Address: 655 Aspen Ridge Drive, Lafayette, CO 80027

Phone Number: 303 604 2000

Website/ Email: www.ctilidar.com iainm@ctilidar.com

Objective:

Overall Phase I/II Objective:

Build and deliver a multispectral transmitter to MARCOR. Transmitter will be interfaced to a government-furnished camera.

Capabilities:

- Compact, ruggedizable multispectral transmitter:
- Proprietary modular transmitter technology, providing high efficiency with simple spatio-temporal control.
- Aircraft-compatible Phase II hardware with a path to Phase III flight-qualified system.

	SBIR Workplan: N01-109	02	03	04
1	Phase I	kummu <mark>n</mark>		
2	Kickoff Meeting	•		
3	Monthly Reports	****		
4	Final Report	\rightarrow		
5	Final Review	♦		
6	Phase I Option (proposed)			
7	Phase II (proposed)			
		2002	2003	2004